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1. Introduction and conclusion

The phase structure of a gauge theory can be probed by studying the behaviour of the order

parameters of the theory as we change external parameters, such as the temperature. In

order to characterize the possible phases, one may insert an infinitely heavy probe charged

particle, and study its response, as it will depend on the phase the gauge theory is in.

Known examples of operators inserting such probes are Wilson, Polyakov and ’t Hooft

operators, which distinguish between the confined, deconfined and the Higgs phase.

It is a natural question to ask whether one can construct an operator which inserts a

probe string instead of a probe particle. If so, we can then study the response of the string

and analyze whether new phases of gauge theory can be found that are not discriminated

by particle probes. Candidate probe strings range from cosmic strings to the wrapped

D-branes of string theory.

Geometrically, an operator inserting a probe string is characterized by a surface Σ in

space-time, which corresponds to the worldsheet spanned by the string. One may refer to
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such operators as surface operators and will label them by OΣ. Such operators are nonlocal

in nature and the challenge is to construct them and to understand their physical meaning.

For early studies of these operators see [11, 12].

Recently, a class of supersymmetric surface operators in N = 4 SYM have been con-

structed by Gukov and Witten [14],1 while the corresponding gravitational description in

terms of smooth solutions of Type IIB supergravity which are asymptotically AdS5 × S5

has been identified in [15]. These operators are defined by a path integral with a codimen-

sion two singularity near Σ for the N = 4 SYM fields. Therefore, these operators are of

disorder type as they do not admit a description in terms of an operator insertion which

can be written in terms of the classical fields appearing in the Lagrangian.

In this paper we construct a family of surface operators in four dimensional N = 4

SYM that do admit a description in terms of an operator insertion made out of the N = 4

SYM fields. In the standard nomenclature, they are order operators. The surface operator

is obtained by inserting into the N = 4 SYM path integral the WZW action supported on

the surface Σ

exp
[

iMΓWZW(A)
]

, (1.1)

where:2

ΓWZW(A) = − 1

8π

∫

Σ
dx+dx−Tr

[(

U−1∂+U
) (

U−1∂−U
)

−
(

U−1∂+U
) (

V −1∂−V
)]

− 1

24π

∫

d3xǫijkTr
[(

U−1∂iU
) (

U−1∂jU
) (

U−1∂kU
)]

.

The U(N) group elements U and V are nonlocally related to the N = 4 SYM gauge field

Aµ along Σ by:

A+ = U−1∂+U A− = V −1∂−V. (1.2)

M is an arbitrary positive integer which labels the level of the WZW model.3

We construct these operators by considering the field theory limit of a supersymmetric

D3/D7 brane intersection along a two dimensional surface Σ. We find that a consistent

description of the low energy dynamics of this brane intersection requires that the gauge

theory on the D3-branes is written down not in flat space but in the non-trivial supergravity

background created by the D7-branes.

In this paper we construct this supersymmetric field theory in the D7-brane super-

gravity background and show that if we integrate out the degrees of freedom introduced

by the D7-branes that the net effect is to insert the operator (1.2) into the gauge theory

action. The same strategy of integrating out the new degrees of freedom introduced on a

brane intersection was used in [16] to construct the Wilson loop operators in N = 4 SYM

1These operators play an important role in enriching the gauge theory approach [13] to the geometric

Langlands program to the case with ramification.
2We note that ΓWZW(A) differs from the conventional WZW model action by the addition of a local

counterterm which is needed to guarantee that the operator has all the appropriate symmetries.
3In the string construction of this operator N denotes the number of D3-branes while M is the number

of D7-branes.
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and to find the bulk AdS description of a Wilson loop in an arbitrary representation of the

gauge group.

The physics responsible for having to consider the gauge theory on the non-trivial su-

pergravity background is that there are chiral fermions localized on Σ arising from the open

strings stretching between the D3 and D7 branes. It is well known that the gauge anoma-

lies introduced by these chiral degrees of freedom are cancelled only after the appropriate

Chern-Simons terms on the D-brane worldvolume are included [17]. The Chern-Simons

terms needed to cancel the anomalies become non-trivial due to the presence of the RR

one-form flux produced by the D7-branes. We show, however, that it is inconsistent to

consider only the RR background produced by the D7-branes. One must also take into ac-

count the non-trivial background geometry and dilaton produced by the D7-branes as they

are of the same order as the effect produced by the RR flux. This can be seen by showing

that the gauge theory in flat space in the presence of the Chern-Simon terms does not

capture the supersymmetries of the brane intersection. Therefore, we are led to consider

the low energy action of N D3-branes in the supergravity background produced by the

intersecting D7-branes. The gauge theory describing the low energy dynamics preserves

eight supersymmetries and is ISO(1, 1) × SU(4) invariant.

Given the construction of the surface operator in term of D-branes we proceed to

study the bulk Type IIB supergravity description of these surface operators. We start by

showing that there is a regime in the bulk description where the D7-branes can be treated

as probe branes in AdS5 × S5. We show that this corresponds to the regime where the

gauge anomaly is suppressed, the Chern-Simons term can be ignored and the gauge theory

lives in flat space. This corresponds to considering the limit where g2M ≪ 1, where g is

the gauge theory coupling constant. In this limit the symmetries of the gauge theory are

enhanced to the SU(1, 1|4) supergroup.

We go beyond the probe approximation and construct the exact Type IIB supergravity

solutions that are dual to the surface operators we have constructed.4 These solutions

can be found by taking the near horizon limit of the supergravity solution describing the

localized D3/D7 brane intersection from which the surface operator is constructed. The

dual supergravity solutions take the form of a warped AdS3×S5×M metric, where M is a

two dimensional complex manifold. These solutions also shed light on the geometry where

the holographic field theory lives. One can infer that the gauge theory lives on the curved

background produced by the D7-branes by analyzing the dual supergravity geometry near

the conformal boundary, thus showing that holography requires putting the gauge theory

in a curved space-time. The explicit construction of the supergravity solutions also gives us

information about the quantum properties of our surface operators. To leading order in the

g2M expansion, the surface operator preserves an SO(2, 2) ⊂ SU(1, 1|4) symmetry, which

is associated with conformal transformations on the surface Σ = R
1,1. In the probe brane

description — where g2M effects are suppressed — we also have the SO(2, 2) symmetry,

while the explicit supergravity solution shows that the SO(2, 2) symmetry is broken by g2M

4The supergravity solution dual to other (defect) operators in N = 4 have appeared in [18 – 22, 15, 23 –

25].
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corrections. This shows that g2M corrections in the field theory break conformal invariance,

which can be seen explicitly by analyzing the gauge theory on the D7-brane background.

This field theory statement is reminiscent5 to the breaking of conformal invariance by g2M

effects that occurs when considering N = 4 SYM coupled to M hypermultiplets, whose

β-function is proportional to g2M .

A general lesson that emerges from this work is that gauge theories in non-trivial

supergravity backgrounds can also serve as the holographic description of string theory

backgrounds. It would be interesting to explore in more detail the dictionary relating bulk

and gauge theory computations. An important problem for the future is to understand the

physics encoded in the expectation value of surface operators and to determine whether

they can be useful probes of new phases of gauge theory. For the surface operators in this

paper it would be interesting to compute their expectation value in perturbation theory.

Given that these operators are supersymmetric it is conceivable that the computation of

their expectation value can be performed in a reduced model, just like the expectation

value of supersymetric circular Wilson loops can be computed by a matrix integral [31, 32].

One may be able to derive the reduced model by topologically twisting the gauge theory

by the supercharges preserved by the surface operator. It would also be interesting to

compute the expectation value of the surface operator by calculating the on-shell action of

the corresponding supergravity solutions.

The plan of the paper is as follows. In section 2 we introduce the D3/D7 brane inter-

section, the corresponding low energy spectrum and discuss the cancellation of the gauge

anomalies via anomaly inflow. We show that the gauge theory on the D3-branes has to be

placed in the supergravity background produced by the D7-branes and construct explicitly

the relevant gauge theory action, derive the appropriate supersymmetry transformations

and show that the action has all the required symmetries. We integrate out all the degrees

of freedom introduced by the D7-branes and show that the net effect is to insert the WZW

action (1.1) into the N = 4 SYM path integral. In section 3 we give the bulk description

of the surface operators. We show that there is a regime where the D7-branes can be

treated as probe branes in AdS5 × S5 and identify this with the regime in the field theory

where the anomaly is suppressed, the Chern-Simons term can be ignored and the gauge

theory lives in flat space. We find the explicit exact supergravity solution describing the

supergravity background produced by the localized D3/D7 brane intersection and show

that in the near horizon limit it is described by an AdS3 × S5 warped metric over a two

dimensional manifold. We show that the metric on the boundary, where the gauge theory

lives, is precisely the D7-brane metric on which we constructed the field theory in section

2. Some of technical details and computations are relegated to the appendices.

Note added: while this work was being completed, the paper [33] appeared, which also

discusses the gauge theory action on the D3/D7 brane intersection and overlaps with

section 2.

5Such models have been realized in string theory using brane intersections in e.g. [26, 27]. For attempts

at computing the supergravity description of this system see e.g. [28 – 30].
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2. Gauge theory and surface operators

2.1 Brane intersection and anomalies

The surface operators in this paper are constructed from the low energy field theory on

a D3/D7 brane configuration that intersects along a surface Σ = R
1,1. More precisely,

we consider the effective description on N D3-branes with worldvolume coordinates xµ =

(x0, x1, x2, x3) and M D7-branes whose worldvolume is parameterized by (x0, x1) and xI =

(x4, x5, x6, x7, x8, x9). The coordinates that parametrize the surface Σ are x0 and x1:

0 1 2 3 4 5 6 7 8 9

N D3 X X X X

M D7 X X X X X X X X

(2.1)

The supersymmetries preserved by the D3-branes are the following6

iγ0123ǫ = ǫ, (2.2)

where ǫ is a ten dimensional complex Weyl spinor satisfying γ01...89ǫ = ǫ, which labels the

thirty-two supersymmetries of Type IIB supergravity. The supersymmetries preserved by

the D7-branes are given by:

iγ01456789ǫ = ǫ. (2.3)

Therefore, in total there are eight supersymmetries preserved by the brane intersection,

which can be shown to be chiral in the two dimensional intersection. If we introduce

coordinates

x± = x0 ± x1 z = x2 + ix3, (2.4)

then the unbroken supersymmetries satisfy

γ+ǫ = 0, (2.5)

or can alternatively be written as

γz̄ǫ = 0, (2.6)

where:

γ+ =
1

2
(γ0 + γ1), γz̄ =

1

2
(γ2 + iγ3). (2.7)

In constructing the supersymmetry transformations of the gauge theory living on the

brane intersection we will use four dimensional Weyl spinors. In the four dimensional

notation, the sixteen supersymmetries preserved by the D3-branes (2.2) are generated by

(ǫα
i, ǭα̇i), where ǫα

i is a four dimensional Weyl spinor of positive chirality transforming

in the (2,4) representation of SL(2, C) × SU(4) and ǭα̇i = (ǫα
i)∗. These spinors generate

6In this paper we denote the γ-matrices in flat space by γ. The curved space γ-matrices are denoted by

Γ. They satisfy {ΓM , ΓN} = 2gMN , where gMN is the space-time metric.
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the usual Poincare supersymmetry transformations of N = 4 Yang-Mills theory. In this

notation, the projectors (2.5) and (2.6) can be written as:7

σ̃+
α̇αǫα

i = 0, σ̃z̄
α̇αǫα

i = 0. (2.8)

Therefore, the projections (2.8) imply that ǫ1
i = ǫ2

i, which parametrize the eight real

supersymmetries preserved by the brane intersection.

In the low energy limit — where α′ → 0 — massive open strings and closed string

excitations decouple and only the massless open strings are relevant. The 3-3 strings yield

the spectrum of four dimensional N = 4 SYM while the quantization of the 3-7 open strings

results in two dimensional chiral fermions χ localized on the intersection, and transform

in the (N, M̄ ) representation of U(N) × U(M). The massless 7-7 strings give rise to a

SYM multiplet in eight dimensions, but these degrees of freedom are non-dynamical in the

decoupling limit and appear in the effective action only as Lagrange multipliers.

The action for the localized chiral fermions is given by

Sdefect =

∫

dx+dx− χ̄(∂+ + A+ + Ã+)χ, (2.9)

where A and Ã denote the D3 and D7-brane gauge fields respectively and we have used the

coordinates introduced in (2.4). Of the usual Poincare supersymmetries of N = 4 SYM,

whose relevant transformations are given by

δAµ = −iλ̄α̇iσ̃µ
α̇αǫα

i + c.c., δχ = 0, δÃµ = 0, (2.10)

the defect term (2.9) is invariant under those supersymmetries for which δA+ = 0, which

are precisely the ones that satisfy the projections in (2.8) arising from the D3/D7 brane

intersection.

Quantum mechanically, the path integral over the localized chiral fermions χ is not

well defined due to the presence of gauge anomalies in the intersection. In order to see

how to cure this problem, it is convenient to split the U(N) and U(M) gauge fields into

SU(N)×U(1) and SU(M)×U(1) gauge fields . With some abuse of notation, we denote the

SU(N) and SU(M) parts of the gauge field by A and Ã respectively, while the corresponding

U(1) parts of the gauge field are denoted by a and ã. Then, the variation of the quantum

effective action under an SU(N) × SU(M) gauge transformation

δAµ = ∂µL + [Aµ, L], δÃµ = ∂µL̃ + [Ãµ, L̃] (2.11)

is given by

δL,L̃S =
1

8π

∫

dx+dx−
[

MTrSU(N)(LdA) + NTrSU(M)(L̃dÃ)
]

, (2.12)

so that the theory is anomalous under SU(N) × SU(M) gauge transformations. Likewise,

U(1) × U(1) gauge transformations

δAµ = ∂µl, δÃµ = ∂µ l̃, (2.13)

7Our conventions on σ-matrices are summarized in appendix A. They are essentially the same as those

in the book [34].

– 6 –



J
H
E
P
1
2
(
2
0
0
7
)
1
0
1

on the quantum effective action yield

δl,l̃S =
1

8π

∫

dx+dx−NM(l − l̃)(f+− − f̃+−), (2.14)

so that the theory is anomalous under the U(1) gauge transformations generated by l − l̃,

and where:

f = da, f̃ = dã. (2.15)

Anomalies supported on D-brane intersections are cancelled by the anomaly inflow

mechanism [17], which relies on the presence of Chern-Simons couplings in the D-brane

worldvolume. The Chern-Simons terms that couple to the SU(N) and SU(M) gauge fields

are given by

SCS(A) = −(2πα′)2τ3

2

∫

G1 ∧ Tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

(2.16)

and

SCS(Ã) = −(2πα′)2τ7

2

∫

G5 ∧ Tr

(

Ã ∧ dÃ +
2

3
Ã ∧ Ã ∧ Ã

)

, (2.17)

where gs is the string coupling constant and τ3 and τ7 is the D3 and D7-brane tension

respectively:

τ3 =
1

gs(2π)3α′2
, τ7 =

1

gs(2π)7α′4
. (2.18)

G1 is the RR one-form flux produced by the stack of D7-branes and G5 is the self-dual RR

five-form flux produced by the stack of D3-branes.

In the presence of localized D-brane sources, the Bianchi identities for the RR fields

are modified in a way that the Chern-Simons terms become non-trivial. In our case, the

modified Bianchi identities are given by

dG1 = MG10τ7δ
2(zz̄) = gsMδ2(zz̄) (2.19)

and

dG5 = NG10τ3δ(x
4)δ(x5) . . . δ(x9), (2.20)

where G10 is the ten-dimensional Newton’s constant which is given by:

G10 = g2
s (2π)7α′4. (2.21)

Therefore, under an SU(N) × SU(M) gauge transformation (2.11), the Chern-Simons

terms (2.16) and (2.17) are not invariant, and reproduce the two-dimensional anomaly

δSCS(A) + δSCS(Ã) = − 1

8π

∫

dx+dx−
[

MTrSU(N)(LdA) + NTrSU(M)(L̃dÃ)
]

, (2.22)

where L and L̃ are taken to vanish at infinity. This mechanism provides a cancellation of

the SU(N) and SU(M) gauge anomalies [17].

The Chern-Simons terms containing the U(1) gauge fields a and ã are more involved.

They have been studied in [35], where the anomalies of a closely related D5/D5 brane
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intersection along a two dimensional defect were studied.8 The analogous terms for the

D3/D7 system are given by:

SCS(a, ã) = −(2πα′)2τ3

2
N

∫

G1 ∧ a ∧ f − (2πα′)2τ7

2
M

∫

G5 ∧ ã ∧ f̃ (2.23)

+
(2πα′)2τ3

2
N

∫

G1 ∧ a ∧ f̃ +
(2πα′)2τ7

2
M

∫

G5 ∧ ã ∧ f.

The first two terms are the usual Chern-Simons couplings analogous to (2.16) and (2.17).

The third term arises from the familiar coupling on the D3-brane worldvolume of the form

∫

a ∧ F3, (2.24)

where F3 is the RR three-form flux, which as argued in [35] is given by F3 = G1 ∧ f̃ in the

presence of G1 and f̃ background fields. Note that f̃ in the third term is to be evaluated

at xI = 0. Similarly, the last term arises from the Chern-Simons coupling on the D7-brane

∫

ã ∧ F7, (2.25)

where the RR seven-form flux is now given by G5 ∧ f , where f is to be evaluated at z = 0.

If we now perform a U(1) ×U(1) gauge transformation, the variation of (2.23) is given by

δSCS(a, ā) = − 1

8π

∫

dx+dx−NM(l − l̃)(f+− − f̃+−), (2.26)

where we have used the modified Bianchi identities (2.19) and (2.20). Therefore, by in-

cluding all the Chern-Simons couplings all anomalies cancel.

Field theory construction of gauge theories with anomaly inflow. Turning on the

RR fluxes (2.19) and (2.20) produced by the D3 and D7 branes is crucial in obtaining an

effective theory which is anomaly free. Usually, in analyzing the low energy gauge theory

on a D-brane intersection in flat space we can ignore the RR flux produced by the branes.

However, whenever there are localized gauge anomalies the RR flux cannot be neglected

as it generates the required Chern-Simons needed to cancel the anomaly. But D-branes

also source other supergravity fields, such as the metric and the dilaton. It is therefore

inconsistent to study the low energy gauge theory in flat space with only the addition of

the RR-induced Chern-Simons terms. Physically, one must consider the gauge theory in

8The physics of that system is quite different from the D3/D7 system studied in this paper. In [35] it was

argued that the dynamics of the gauge fields pushes the fermions away from the intersection by a distance

determined by the (dimensionful) gauge theory coupling constant. In our system the fermions are stuck at

the intersection since the U(N) coupling constant is dimensionless unlike the one on the D5-branes which

is dimensionful while the U(M) gauge coupling constant vanishes in the decoupling limit, pinning down the

fermions at the intersection. Moreover, in [35] the symmetry is enhanced from ISO(1, 1) to ISO(1, 2) while

in our system the symmetry is enhanced from ISO(1, 1) to SO(2, 2), but only to leading order in the g2M

expansion. Here we also resolve a puzzle left over in their paper, which is to construct the gauge theory

action with all the expected supersymmetries.
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the full supergravity background produced by the other D-brane, as the effect of the metric

and dilaton is of the same order as the effect of the RR flux.

One way to see that it is inconsistent to consider the gauge theory on the D3-branes

in flat space and in the presence of only the RR-flux produced by the D7-branes is to note

that the naive action of the system

S = SN=4 + Sdefect + SCS(A) + SCS(Ã) + SCS(a, ã), (2.27)

is not supersymmetric, where SN=4 is the usual flat space action of N = 4 SYM and the

other terms appear in (2.9), (2.16), (2.17) and (2.23) respectively. In particular, this low-

energy gauge theory does not capture the supersymmetries of the brane intersection (2.8),

and therefore is not a faithful description of the low energy dynamics.

In the rest of this section we construct the low energy gauge theory living on the

D3-branes when embedded in the full supergravity background of the D7-branes — which

includes the appropriate Chern-Simons terms — and show that the field theory has all the

required symmetries.

2.2 The D7-brane background

As just argued, we must construct the low energy gauge theory on the D3-branes when

placed in the full supergravity background of the D7-branes. We will devote this subsection

to reviewing the salient features of the D7-brane background.

The metric produced by the D7-branes in the brane array (2.1) is given by

ds2 = gMNdxMdxN = H
−1/2
7 (−(dx0)2 + (dx1)2 + dxIdxI) + H

1/2
7 dzdz̄, (2.28)

where the coordinates are defined in (2.1). The RR axion C and the dilaton Φ can be

combined into a complex field τ with is holomorphic in z, so that the axion and the dilaton

produced by the D7-branes is given by:

∂z̄τ = 0 where τ = C + ie−Φ e−Φ = H7. (2.29)

This background solves the Killing spinor equations of Type IIB supergravity

δΨM = ∂M ǫ +
1

4
ωAB

M ΓABǫ − i

8
eΦ∂NCΓNΓM ǫ = 0, (2.30)

δψ = (ΓM∂MΦ)ǫ + ieΦ∂MCΓMǫ = 0, (2.31)

and preserves the sixteen supersymmetries satisfying

ǫ = H
−1/8
7 ǫ0, γz̄ǫ0 = 0, (2.32)

where ΨM and ψ are the ten-dimensional gravitino and dilatino respectively.

The simplest solution describes the local fields around a coincident stack of D7-branes.

This local solution has a U(1) symmetry, which acts by rotations in the space transverse

to the D7-branes, which is parametrized by the coordinate z. It is given by

τ = iτ0 +
gsM

2πi
ln z, (2.33)
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so that

e−Φ = H7 = τ0 −
gsM

2π
ln r, C =

gsM

2π
θ, (2.34)

where z = reiθ and τ0 is an arbitrary real constant. This solution, however, is only valid

very near the branes — for small r — as e−Φ becomes negative at a finite distance and we

encounter a singularity. The local solution for separated branes corresponds to

τ = iτ0 +
gs

2πi

M
∑

l=1

ln(z − zl), (2.35)

where zl is location of the l-th D7-brane.

As shown in [1] (see [2, 3] for more recent discussions), the local solution can be patched

into global solutions that avoid the pathologies of the local one. The global solutions

break the U(1) symmetry present in the local solution of coincident D7-branes. In order to

describe them it is convenient to switch to the Einstein frame, where the SL(2, Z) invariance

of Type IIB string theory is manifest. In this frame, the local metric is given by

ds2 = −(dx0)2 + (dx1)2 + dxIdxI + H7dzdz̄. (2.36)

Since τ is defined up to the action of SL(2, Z) and Im τ > 0, it follows that τ takes values

in the fundamental domain F = H+/SL(2, Z), where H+ is the upper half plane. In order

to find a global solution for τ one has to consider the one-to-one map j : F → C from the

fundamental domain F to the complex plane C. This map j is well-known and given by

j(τ) =
(θ2(τ)8 + θ3(τ)8 + θ4(τ)8)3

η(τ)24
, (2.37)

where the θ’s are the usual theta-functions while η is the Dedekind η-function

η(τ) = q1/24
∏

n

(1 − qn), (2.38)

where q = e2πiτ . Then the various solutions for τ are given by

j(τ(z)) = g(z), (2.39)

where g(z) is an arbitrary meromorphic function in the complex plane. For a stack of M

coincident D7-branes we have

g(z) = a +
b

zgsM
, (2.40)

where a sets the value of the dilaton at infinity and b is related to τ0 in (2.34). Indeed, for

Im τ ≫ 1, j(τ) ≃ e−2πiτ which implies the local behavior (2.33) near z = 0.

In general, different choices of g(z) correspond to different types of D7-brane solutions.

The metric can be written in the following form

ds2 = −(dx0)2 + (dx1)2 + dxIdxI + H7f f̄dzdz̄, (2.41)

where as in the local case H7 = e−Φ and where f is a holomorphic function of z. Locally,

one can always choose a coordinate system where f f̄dzz̄ = dz′dz̄′ for some local coordinates
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z′ and z̄′. This brings the metric (2.41) to the usual local form (2.36). However, globally

this cannot be done as discussed above. For the metric to be globally defined, H7f f̄ has

to be SL(2, Z) invariant. The solution studied in [1] is given by

H7f f̄ = e−Φη2η̄2|
M
∏

i=1

(z − zi)
−1/12|2, (2.42)

where zi’s are the location of the poles of g(z), which correspond to the position of the

various D7-branes in the z-plane.9

The metric (2.41) is smooth everywhere except

1) at z = zi where it behaves as ln |z − zi| due to the presence of a D7-brane source

there and

2) at infinity, where it has a conical singularity with deficit angle δ = πM
6 . In this paper,

we will mostly be using the D7-brane background in the local form (2.28), (2.29).

However, as we explained the generalization to the global case is straightforward.

We finish this subsection by constructing the Killing spinors of the gauge theory on the

D3-branes when placed in the background of the D7-branes. If we consider the D3/D7 in-

tersection in (2.1), we need the restriction of the D7-brane background to the worldvolume

of the D3-branes. Then the induced metric on the D3-branes is given by:

ds2 = gµνdxµdxν = −H
−1/2
7 dx+dx− + H

1/2
7 dzdz̄. (2.43)

The Killing spinor equation satisfied by the four dimensional spinors ǫα
i that generate the

worldvolume supersymmetry transformations on the D3-branes is given by10

Dµǫα
i = − i

8
eΦ∂νCσν

αα̇σ̃ α̇β
µ ǫβ

i, (2.45)

where Dµ is the covariant derivative in the background metric (2.43). Therefore

ǫα
i = H

−1/8
7 ǫ0α

i, (2.46)

where

σ̃ α̇α
z̄ ǫα

i = 0, σ̃ α̇α
+ ǫα

i = 0, (2.47)

thus reproducing the supersymmetry conditions derived for the brane intersection (2.8). In

the next subsection we write down the action and supersymmetry transformations of the

D3/D7 low energy gauge theory and show that the preserved Killing spinors satisfy (2.45)

subject to the constraints (2.47).

9There are restrictions on the range of M coming from the fact that for M large enough the space

becomes compact. This was studied in detail in [1]. We will not discuss this point in this paper.
10To go to the four dimensional notation we have used:

Γµ = i

 

0 σµ

σ̃µ 0

!

. (2.44)
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2.3 Holographic gauge theory in background fields

In this subsection we construct the low energy gauge theory on the D3-branes when placed

in the full supergravity background of the D7-branes. This is the appropriate decoupled

field theory that holographically describes the physics of the dual closed string background,

which we obtain in section 3 by finding the supergravity solution of the D3/D7 intersection.

We also construct the corresponding supersymmetry transformations and show that the

action is invariant under the subset of N = 4 supersymmetry transformations satisfying

the restrictions (2.45) and (2.47), which are precisely the supersymmetries preserved by

the D-brane intersection in flat space (2.1).

There is a systematic way of constructing the action and supersymmetry transforma-

tions on a single D-brane in an arbitrary supergravity background. The starting point is to

consider the covariant D-brane action in an arbitrary curved superspace background [36, 37]

(which generalizes the flat space construction in [38].) These actions can in principle be

expanded to all orders in the fermions around a given background, even though explicit

formulas are not easy to obtain. The covariant action has κ-symmetry and diffeomorphism

invariance. By fixing κ-symmetry we can gauge away sixteen of the thirty two fermions of

Type IIB supergravity superspace. The remaining sixteen fermions are then identified with

the gauginos filling up the SYM multiplet living on the D-brane. Likewise, worldvolume

diffeomorphisms can be fixed by specifying how the brane is embedded in the background,

which allows for the identification of the scalars of the SYM multiplet parametrizing the

position of the D-brane.

In order to construct the explicit supersymmetry transformations of the gauge fixed

action one must combine the superspace supersymmetry transformations on the physical

fields together with a compensating κ and diffeomorphism transformation to preserve the

gauge fixing condition.

Since we are interested in considering a decoupling limit, where α′ → 0, this pro-

cedure simplifies considerably. In this limit the only terms in the action that survive

are quadratic in the fields. Fortunately, the explicit expression for the D-brane action

to quadratic order in the fermions in an arbitrary supergravity background can be found

in [4]11 (see also [5, 6, 39] ). This approach gives the brane action quadratic in fermions

with fixed κ-supersymmetry and diffeomorphisms in an arbitrary supersymmetric back-

ground. Therefore, we start by finding the action for a single D3-brane in the D7-brane

background following [4]. Later we will show how to extend this analysis to the case when

the gauge group is non-Abelian.

Let us start with the bosonic action in the D7-brane background. The action for the

gauge field Aµ is straightforward to write down. It is given by

SV = −T3

4

∫

d4x
√−ge−ΦFµνFµν − T3

4

∫

d4x
√−g∂µCǫµνρσAνFρσ , (2.48)

11In that paper the action is written to quadratic order in the fermionic fields and to all order in the

bosonic fields. In the decoupling limit, we will only need to extract the action to quadratic order in the

bosonic fields.
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where

T3 = (2πα′)2τ3 =
1

2πgs
=

1

g2
, (2.49)

where g is the SYM coupling constant. The coordinates xµ = (x+, x−, z, z̄) describe the

coordinates along the D3-brane worldvolume as defined in (2.1). The metric used on the

D3-brane worldvolume is the induced metric (2.43) from the D7-brane background.

In order to obtain the action for the scalar fields on the D3-brane it is important to

properly identify which are the fields describing the D-brane fluctuations. We introduce

vielbeins which are adapted to the symmetries preserved by the D3-brane (eµ̂, eÎ), where µ̂

and Î denote the flat indices along and transverse to the D3-brane respectively. The static

gauge is fixed by the requirement that the pullback of the vielbein eÎ
I on the D3-brane

vanishes and the pullback of the vielbein eµ̂
µ forms a D3-brane worldvolume vielbein. The

physical scalar fields are parametrized by

ϕÎ = eÎ
Iδx

I (2.50)

rather than by the fluctuations in the transverse coordinates δxI . The scalar fields ϕÎ

transform under the local tangent space SU(4) ≃ SO(6) symmetries while the fluctuations

δxI transform under diffeomorphisms in the transverse space. This choice of the static

gauge manifestly has the SO(6) R-symmetry since the index Î is flat.

The low energy action for the scalar fields ϕÎ can be obtained by expanding the bosonic

part of the DBI action:

SDBI = −τ3

∫

d4xe−Φ
√
−G. (2.51)

G is the determinant of the metric

Gµν = gµν + GIJ∂µδxI∂νδxJ , (2.52)

where gµν is the induced metric (2.43) and GIJ is the metric in the transverse space (2.36)

GIJ = H−1/2δIJ = eΦ/2δIJ , (2.53)

where the last equality is a property of the D7-brane background.

Therefore, we find that the quadratic action for the scalar fields in the SYM multiplet

is given by

SSc = −T3

2

∫

d4x
√−ge−ΦGIJ∂µδxI∂µδxJ

= −T3

2

∫

d4x
√−ge−ΦGIJ∂µ(eI

Î
ϕÎ)∂µ(eJ

Ĵ
ϕĴ), (2.54)

where the worldvolume indices µ are contracted with the induced metric (2.43) and we

have used (2.50) to eliminate δxI in terms of ϕÎ . We note that ∂µ in (2.54) acts not only

on ϕÎ but also on the vielbein’s eI
Î
. This fact is responsible for giving a mass to the scalar

fields ϕÎ . More precisely, evaluating (2.54) gives

SSc = −T3

2

∫

d4x
√−ge−Φ(∂µϕÎ∂µϕÎ +

1

2
(R + ∂µ∂µΦ)ϕÎϕÎ), (2.55)
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where R is the scalar curvature of the induced metric (2.43), which in terms of the dilaton

field Φ is given by:

R = −3

8
∂µΦ∂µΦ − 1

2
∂µ∂µΦ. (2.56)

A similar mass term proportional to the curvature appears in the action of N = 4 Yang-

Mills theory in R × S3 [7] (for a recent discussion see [8]).

For later convenience, we parametrize the six scalars ϕÎ by a two-index antisymmetric

tensor ϕij of SU(4) via

ϕÎ =
1

2
γ Î

ijϕ
ij , ϕij =

1

2
γ̃ ÎijϕÎ , ϕij =

1

2
ǫijklϕ

kl, (2.57)

where γ Î
ij are the Clebsch-Gordan coefficients that couple the 6 representation of SO(6)

to the 4’s of SU(4) labeled by the i, j indices. The Clebsch-Gordan coefficients satisfy a

Clifford algebra:

{γ Î , γ̃Ĵ} = 2δÎ Ĵ . (2.58)

In this parametrization the action of the scalar fields in the SYM multiplet is given by:

SSc = −T3

2

∫

d4x
√−ge−Φ(∂µϕij∂µϕij +

1

2
(R + ∂µ∂µΦ)ϕijϕij). (2.59)

Now we move on to the action for the fermions in the SYM multiplet. As indicated earlier,

the κ-supersymmetric DBI action depends on thirty two spinors, which can be parametrized

by two ten dimensional Majorana spinors of positive chirality, denoted by θ1 and θ2. Fixing

κ-supersymmetry is equivalent to setting one of them, say θ2 to zero. Hence, the fermionic

action can be written in terms of θ1, which is identified with the gaugino in the SYM

multiplet. The quadratic fermionic action with fixed κ-supersymmetry was found in [4].

Adopting their answer to our present case we obtain:

SF =
T3

2

∫

d4x
√−ge−Φ(θ̄1Γ

µDµθ1 − θ̄1Γ̂
−1
D3

(ΓµWµ − ∆)θ1). (2.60)

In this expression we have used:

θ̄1 = iθT
1 γ0, (2.61)

Γ̂D3
= γ0γ1γ2γ3, (2.62)

Wµ =
1

8
e−Φ∂νCΓνΓµ, (2.63)

∆ = −1

2
e−Φ∂µCΓµ. (2.64)

In order to write the action in terms of four dimensional spinors we use the basis of Γ

matrices in (2.44) and decompose

θ1 =

(

λα
i

λ̄α̇i

)

, (2.65)
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where λα
i is the four dimensional gaugino. We then obtain the action for the fermionic

components of the SYM multiplet:

SF = T3

∫

d4x
√−ge−Φ

(

i

2
λ̄iσ̃

µDµλi − i

2
Dµλ̄iσ̃

µλi

)

− T3

4

∫

d4x
√−g∂µCλ̄iσ̃

µλi. (2.66)

In summary, the total action for the SYM multiplet in the Abelian case is then given by:

Sabel = SV + SSc + SF , (2.67)

where SV , SSc and SF are given by (2.48), (2.59) and (2.66) respectively.

The supersymmetry transformations can be obtained from the superspace supersym-

metry transformations on the physical fields with a compensating κ and diffeomorphism

transformation to preserve the gauge fixing condition [4]. For the case under consideration

we find that the action (2.67) is supersymmetric under the following transformations

δAµ = −iλ̄iσ̃µǫi + c.c. (2.68)

δϕij = (λαiǫα
j − λαjǫα

i) + ǫijklǭα̇kλ̄
α̇

l (2.69)

δλα
i = −1

2
Fµν(σµσ̃ν) β

α ǫβ
i − 2iσµ

αα̇(∂µϕij)ǭα̇
j +

i

2
σµ

αα̇(∂µΦ)ϕij ǭα̇
j, (2.70)

where ǫα
i is a Killing spinor satisfying (2.45) and subject to the constraints

σ̃ α̇α
z̄ ǫα

i = 0, σ̃ α̇α
+ ǫα

i = 0, (2.71)

so that the action is invariant under eight real supersymmetries.

We note that the variation of the gaugino contains a term proportional to the derivative

of the dilaton which is absent in the usual N = 4 SYM theory in flat space. The appearance

of this term is consistent with the presence of a scalar “mass term” in the action (2.59).

The existence of the mass term in the action indicates that a non-vanishing constant values

of ϕij does not solve equations of motion. On the other hand, the set of supersymmetric

solutions can be obtained by setting the variations of the fermions to zero. Therefore, the

absence of the last term in δλα
i would indicate that any constant ϕij was a supersymmetric

solution, in direct contradiction with the equations of motion.12

The formalism using the covariant D-brane action allowed us to write a supersymmetric

gauge theory action when the gauge group is Abelian. We now extend the analysis of the

action and the supersymmetry transformations to the case when the gauge group is non-

Abelian. The extension is relatively straightforward. In the action (2.67) we replace all

derivatives Dµ by the gauge covariant derivatives Dµ, where

Dµ· = Dµ · +[Aµ, ·], (2.73)

12One can perform a field redefinition and get rid of the “mass term” for the scalar fields in (2.58). To

do this, one simply goes from ϕÎ to δxI

δx
I = e

I

Îϕ
Î = e

−

Φ

4 ϕ
Î
δ

I

Î
. (2.72)

This transformation eliminates the “mass term” for the scalar fields as well as the term i

2
σ

µ
αα̇(∂µΦ)ϕij ǭα̇

j

in the supersymmetry transformations for the gauginos.
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replace the Chern-Simons term in (2.48) by its non-Abelian analog

−T3

4

∫

d4x
√−g∂µCǫµνρσTr(AνFρσ − 2

3
AνAρAσ), (2.74)

and add the familiar non-Abelian couplings of N = 4 SYM in flat space:

Snabe = T3

∫

d4x
√−ge−ΦTr(λ̄α̇i[λ̄

α̇
j , ϕ

ij ] + λαi[λα
j , ϕij ] −

1

2
[ϕij , ϕkl][ϕij , ϕkl]). (2.75)

In the supersymmetry transformations (2.68) we replace also all covariant deriva-

tives Dµ with Dµ, and add to δλα
i the usual flat space N = 4SYM commutator term

−2[ϕjk, ϕ
ki]ǫα

j.

We have found the complete non-Abelian action on N D3-branes when embedded in

the D7-brane background. The full action is given by:

S = −T3

4

∫

d4x
√−ge−ΦTrFµνFµν − T3

4

∫

d4x
√−g∂µCǫµνρσTr

(

AνFρσ − 2

3
AνAρAσ

)

+T3

∫

d4x
√−ge−ΦTr

(

i

2
λ̄iσ̃

µDµλi − i

2
Dµλ̄iσ̃

µλi

)

− T3

4

∫

d4x
√−g∂µCTr(λ̄iσ̃

µλi)

−T3

2

∫

d4x
√−ge−ΦTr

(

DµϕijDµϕij +
1

2
(R + ∂µ∂µΦ)ϕijϕij

)

+T3

∫

d4x
√−ge−ΦTr

(

λ̄α̇i[λ̄
α̇

j, ϕ
ij ] + λαi[λα

j , ϕij ] −
1

2
[ϕij , ϕkl][ϕij , ϕkl]

)

. (2.76)

The action on the D3-branes (2.76) is invariant under the following explicit supersym-

metry transformations

δAµ = −iλ̄iσ̃µǫi + c.c.

δϕij = (λαiǫα
j − λαjǫα

i) + ǫijklǭα̇kλ̄
α̇

l

δλi
α = −1

2
Fµν(σµσ̃ν) β

α ǫβ
i − 2iσµ

αα̇(∂µϕij)ǭα̇
j +

i

2
σµ

αα̇(∂µΦ)ϕij ǭα̇
j (2.77)

−2[ϕjk, ϕ
ki]ǫα

j,

where ǫα
i is a Killing spinor satisfying (2.45) and subject to the constraints (2.71). It,

thus, preserves the same eight supersymmetries preserved by the D-brane intersection.

The detailed check of the invariance of the action (2.76) under the supersymmetry

transformations (2.77) is summarized in appendix B.

We finish this subsection by stating the symmetries of this field theory. The bosonic

symmetry is ISO(1, 1) × SO(6). Furthermore, the field theory is invariant under eight

real supercharges. Note that the theory is not conformally invariant. The dilatations

and special conformal transformations are broken by z-dependent warp-factors H7(z, z̄)

in (2.43).

2.4 The WZW surface operator

In this final subsection we show that the field theory on the D3/D7 intersection describes

a surface operator of N = 4 SYM in the D7-brane background. This surface operator,
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unlike the one in [14], has a classical expression that can be written down in terms of the

classical fields that appear in the Lagrangian of N = 4 SYM.

The strategy that we follow for determining the expression for the surface operator is

to integrate out explicitly the fermions χ, χ̄ that are localized on the surface. The effect

of the non-dynamical D7-brane gauge field is trivial and we suppress it in this section. In

appendix C we show that integrating over this gauge field reproduces the same answer as

when we suppress it. This same strategy was used in [16] to derive the Wilson loop operators

in N = 4, which were obtained by integrating out the localized degrees of freedom living

on the loop arising from a brane intersection.

We want to perform the following path integral13

Z = eiS ·
∫

[Dχ][Dχ̄] exp (iSdefect) , (2.78)

where:

Sdefect =

∫

dx+dx−χ̄ (∂+ + A+)χ. (2.79)

S is the N = 4 SYM action in the D7-brane background (2.76).

We proceed to integrating out the chiral fermions localized on the surface. This is

well known to produce a WZW model, which precisely captures the anomaly of the chiral

fermions via the identity

Det(∂+ + A+) = exp (icRΓWZW(A)), (2.80)

where cR is the index of the representation R under which the fermions transform. The

explicit expression for the WZW action one gets is

ΓWZW(A) = − 1

8π

∫

dx+dx−Tr
[(

U−1∂+U
) (

U−1∂−U
)

−
(

U−1∂+U
) (

V −1∂−V
)]

− 1

24π

∫

d3xǫijkTr
[(

U−1∂iU
) (

U−1∂jU
) (

U−1∂kU
)]

, (2.81)

where U and V are U(N) group elements nonlocally related to the gauge field of N = 4

SYM:

A+ = U−1∂+U A− = V −1∂−V. (2.82)

We note that ΓWZW(A) differs from the conventional WZW model action by the addition

of a local counterterm:

1

8π

∫

dx+dx−Tr
[(

U−1∂+U
) (

V −1∂−V
)]

=
1

8

∫

dx+dx−TrA+A−. (2.83)

The addition of this term is needed to guarantee that (2.81) reproduces the correct chiral

anomaly. Indeed, it is straightforward to show that under a U(N) gauge transformation

δAµ = ∂µ + [Aµ, L] we have that the WZW action (2.81) is not invariant:

δΓWZW(A) =
1

8π

∫

dx+dx−Tr [L (∂+A− − ∂−A+)] . (2.84)

13After this integral is performed, we must still integrate over the N = 4 SYM fields.
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This gives the same anomalous variation as the usual anomaly in two dimensions (2.12).

We recall that our complete action, which combines the N = 4 SYM action on the D7-

brane background (2.76) with the defect term in (2.79) is not anomalous. The anomaly

produced by the WZW action is precisely cancelled by a Chern-Simons term.

We also note that ΓWZW(A) is not invariant under the supersymmetry transforma-

tions (2.77), unlike the original action Sdefect. But we recall that the Chern-Simons terms

always has a boundary term under any variation of the gauge field and that this boundary

contribution cancels the variation of ΓWZW(A) proportional to δA−. For this cancellation

to occur, it is also crucial to add the local counterterm (2.83).

Therefore, integrating out the localized fields has the effect of inserting the following

surface operator into the gauge theory action (2.76):

OΣ = exp (iMΓWZW(A)) . (2.85)

The surface operator is described by a U(N) WZW model at level M . The explicit form of

the action is (2.81), where U and V are U(N) valued group elements that are nonlocally

related to the N = 4 SYM gauge fields via:

A+ = U−1∂+U A− = V −1∂−V. (2.86)

The surface operator (2.85) is supersymmetric under the transformations (2.77) and U(N)

invariant when combined with the gauge theory action in the D7-brane background (2.76).

Using the explicit expression for the surface operator one can study its properties in

perturbation theory. For the case when Σ = R
1,1 we expect that supersymmetry requires

〈OΣ〉 = 1, just like in the case of the Wilson line. Another interesting case to consider —

which is related by a conformal transformation to the Euclidean version of the previous

case — is when Σ = S2. In this case Σ is curved and we expect that there is a conformal

anomaly associated with the surface which would be interesting to compute explicitly. The

bulk description discussed in the next section supports these expectations, as we find that

at least in the probe approximation that 〈OΣ〉 = 1 and that there is a conformal anomaly

for the cases Σ = R
1,1 and S2 respectively.

Given that these operators are supersymmetric one may expect that the computation

of their expectation value is captured by a simpler model, similar to what happens for

circular Wilson loops [31, 32]. One may be able to derive the reduced model by topologically

twisting the gauge theory by the supercharges preserved by the surface operator.

3. The bulk description

In this section we study the physics of the surface operator from a dual gravitational point

of view. We find that there is a regime in which the D7-branes can be treated as a probe

brane in AdS5 × S5 and identify the corresponding regime in the gauge theory. We also

find the exact solutions of the Type IIB supergravity equations of motion — which take

the backreaction of the D7-branes into account — which are dual to the surface operators

in the gauge theory we have constructed in this paper.
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3.1 The probe approximation and anomaly suppression

In the previous section we have constructed the decoupled low energy effective field theory

living on the D3/D7 intersection (2.1). Following [40] our aim in this section is to provide

the bulk gravitational description of this field theory. This requires finding the supergravity

solution describing the brane intersection (2.1) [40].

In the absence of the D7-branes, the gauge theory on N D3-branes is dual to string

theory in AdS5×S5 [40]. We are interested in understanding what the effect of introducing

the D7-branes is in the bulk description.

One may try to first consider the D7-branes as a small perturbation around the AdS5×
S5 background. The parameter that controls the gravitational backreaction due to the M

D7-branes can be extracted from the supergravity equations of motion. It is governed by

ǫ = M · G10τ7 = gsM =
g2

2π
M. (3.1)

In the last step we have written the parameter using gauge theory variables, where g is

the gauge theory coupling constant. Therefore, we can treat the D7-branes as probes in

AdS5 × S5 as long as g2M is small.

In the regime where g2M is small we can consistently treat the D7-branes in the

probe approximation. It is straightforward to show that the D7-brane equations of motion

are solved by the embedding (2.1) even when we place the D7-branes in the non-trivial

supergravity background produced by the D3-branes. Upon taking the D3-brane near

horizon limit, the brane embedding geometry is that of AdS3 × S5 [41].

We are now in a position to determine what is the field theory counterpart of the

bulk probe approximation. We recall that the gauge theory we constructed in the previous

section is defined on the D7-brane background. In the probe regime, where g2M ≪ 1,

the background produced by the D7-branes becomes trivial, as the metric becomes flat,

the dilaton goes to a constant and the RR flux vanishes. Hence, in this limit we get the

following gauge theory

S = SN=4 +

∫

dx+dx− χ̄(∂+ + A+)χ, (3.2)

where SN=4 is the standard action of N = 4 SYM in flat space.

However, we have argued that it was crucial to consider the gauge theory on the full D7-

brane geometry, so as to get an anomaly free and supersymmetric theory. The resolution

lies in the observation that the gauge anomaly is suppressed in this limit. In order to

better understand the parameter controlling the anomaly, it is convenient to rescale the

gauge fields in the action as follows Aµ → gAµ. In this presentation it becomes clear what

the effect of the coupling constant is on physical quantities. The quantum effective action

obtained by integrating the fermions is anomalous, the obstruction to gauge invariance

being measured by14

δLS =
g2M

8π

∫

dx+dx−TrU(N)(LdA), (3.3)

14In the frame where the coupling constant controls the interaction vertices in gauge theory, the gauge

parameter must also be rescaled L → gL.
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so that the anomaly is controlled by the same parameter that controls the backreaction of

the D7-branes in the bulk (3.1), and is therefore suppressed in the probe limit g2M → 0.

Note that to leading order in the g2M expansion the two dimensional Poincare sym-

metry of the gauge theory is enlarged to SO(2, 2) ≃ SL(2, R) × SL(2, R), as long as the

D7-branes are coincident. This can be understood from the point of view of the symmetries

of N = 4 SYM in flat space. A surface Σ = R
1,1 ⊂ R

1,3 is invariant under an SO(2, 2)

subgroup of the SO(2, 4) four dimensional conformal group. The symmetries are generated

by Pµ,Mµν ,Kµ and D, with µ = 0, 1, where Kµ and D generate the special conformal and

dilatation transformations respectively. In this case — where the D7-branes are coinci-

dent — the theory acquires eight extra supersymmetries, which correspond to conformal

supersymmetries. Indeed, theSN=4 term in (3.2) is invariant under sixteen superconformal

supersymmetries generated by ε i
α . The second term in (3.2), given by Sdefect, is invariant

under the conformal supersymmetries generated by:

σ̃ α̇α
− ε i

α = 0. (3.4)

To see this consider the relevant superconformal transformations

δAµ = −ixνλβiσµβα̇σ̃ α̇α
ν ε i

α + c.c., δχ = 0. (3.5)

It is straightforward to show that δA+ = 0 if (3.4) is fulfilled and the defect action is local-

ized at z = 0. All these symmetries combine into the SU(1, 1|4)×SL(2, R) supergroup [42].

Once g2M corrections are taken into account, so that the anomaly, the Chern-Simons

terms and the D7-brane background cannot be neglected, the symmetries are broken

down15 to ISO(1, 1) × SO(6) and the theory is invariant under eight supersymmetries.

Even if we start with coincident D7-branes, once one takes into account the proper global

solution (2.42), the U(1) symmetry is broken.

Let’s now consider the symmetries of the bulk theory in the probe approximation.

When the M D7-branes are coincident the D7-branes are invariant under SO(2, 2)×SO(2)×
SO(6). The SO(2, 2) and SO(6) symmetries act by isometries on the AdS3 and S5 worldvol-

ume geometry respectively. The U(1) symmetry rotates the z-plane in (2.1). We show (see

appendix D) that the coincident D7-branes also preserve half of the Type IIB supersym-

metries, which coincide precisely with the Poincare and special conformal supersymmetries

preserved in the gauge theory, which are given by

σ̃+
α̇αǫα

i = 0 (3.6)

and

σ̃−
α̇αεα

i = 0 (3.7)

respectively. The unbroken symmetries combine to form a chiral superconformal group,

which is an SU(1, 1|4) × SL(2, R) supergroup, as thus coincides with the gauge theory

15This is similar to the breaking of conformal invariance by g2M effects that occurs when considering

N = 4 SYM coupled to M hypermultiplets, where the β-function is proportional to g2M , so that g2M

effects break conformal symmetry.
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symmetries discussed above. If the D7-branes are not coincident, in both field and gravity

theory the symmetry is broken down to ISO(1, 1)×SO(6) and only eight supersymmetries

survive.

The AdS3 × S5 D7-brane ends on the surface Σ on the boundary of AdS5 × S5, thus

providing boundary conditions for the surface operator. One can use the probe D7-brane

to calculate the expectation value of the surface operator in the probe regime. In the

semiclassical approximation it is given by [43, 44]

〈OΣ〉 = exp(−Son−shell
D7 ). (3.8)

For the brane embedding at hand the D7-brane on-shell action is given by

Son−shell
D7 = τ7L

8vol(S5)volren(AdS3), (3.9)

where L is the AdS5/S
5 radius, vol(S5) is the volume of the S5 and volren(AdS3) is the

renormalized volume of AdS3. As usual the bulk action is infrared divergent and requires

renormalization. This is accomplished by adding covariant counterterms. It is easy to

show that the renormalized volume of AdS3 vanishes so we find that 〈OΣ〉 = 1 in the

probe approximation. The same answer is obtained for the gauge theory in the probe

approximation (3.2), as one just gets the partition function over free fermions.

One may consider surface operators defined on surfaces Σ other than R
1,1 in the probe

approximation. In the bulk, this corresponds to considering D7-brane solutions of the DBI

equations of motion that end on the boundary of AdS5 × S5 on Σ. The case when Σ = S2

can be obtained easily from the euclidean solution with Σ = R
2 by acting with a broken

special conformal transformation. In this case the bulk D7 brane is still AdS3 × S5, but

now AdS3 is in global coordinates and the brane ends on the boundary of AdS5 on an S2.

In this case, the calculation of D-brane action is non-trivial as the renormalized volume

of global AdS3 is non-trivial. In this case, one finds that the D7-brane has a conformal

anomaly, similar to the one discussed in [46, 45] in the context of M2-branes ending on

an S2 in AdS7 × S4. This is encoded in the coefficient of the logarithmic divergence of

the on-shell action, which for M D7-branes is controlled by τ7L
8 = g2MN2. It would

be interesting to calculate the corresponding conformal anomaly in the gauge theory in

perturbation theory.

3.2 The supergravity solution

In this final subsection we find the bulk description of a surface operator in terms of solution

of the Type IIB supergravity. According to AdS/CFT duality, this solution is obtained by

taking the near-horizon limit of the supergravity solution of the brane intersection (2.1).

The explicit form of the solution corresponding to (2.1) is given by:

ds2 = −H
−1/2
3 H

−1/2
7 dx+dx− + H

−1/2
3 H

1/2
7 dzdz̄ + H

1/2
3 H

−1/2
7 dxIdxI

e−Φ = H7

F0123I = H7∂IH
−1
3

∂z̄τ = 0 where τ = C + ie−Φ. (3.10)
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H3 = H3(x
I) is an arbitrary harmonic function in the space transverse to the D3-branes

while H7 = H7(z, z̄) determines the D7-brane contribution and it is of the same form as

in section 2. It is straightforward to show that this supergravity background solves the

Type IIB supergravity Killing spinor equations and that moreover the space of solutions is

eight real dimensional and can be parametrized by four dimensional spinors satisfying the

constraints (2.5) and (2.6).

Here we are interested in the supergravity solution describing the decoupled gauge

theory constructed earlier and that lives on the D3/D7 intersection. This corresponds to

taking the near horizon limit of the supergravity solution corresponding to the case when

the N D3-branes are coincident — so that H = 1+L4/ρ4 — where dxIdxI = dρ2 +ρ2dΩ5.

In this limit the metric can be written in terms of an AdS3 × S5 factor. The geometry

describing the surface operator is given by

ds2 = H
−1/2
7

(

ds2
AdS3

+ L2dΩ5

)

+
ρ2

L2
H

1/2
7 dzdz̄, (3.11)

where:

ds2
AdS3

= − ρ2

L2
dx+dx− + L2 dρ2

ρ2
. (3.12)

This metric reveals several interesting features of the holographic correspondence. We

have argued that it is inconsistent to describe a low energy field theory with anomaly inflow

by treating the gauge theory in flat space. We have argued that the proper description of

the system is in terms of the gauge theory in the supergravity background produced by

the other brane. In particular, for our intersection, we have constructed the gauge theory

on the D3-branes in the background of the D7-branes and found that this field theory

has all the expected properties. We can now use the dual supergravity solution (3.12) to

indeed infer that the holographic dual gauge theory lives in the background geometry of the

D7-branes and not in flat space. Indeed if we analyze the metric living on the conformal

boundary — where ρ → ∞ — we precisely get the metric on which the gauge theory

lives (2.43).

The solution also gives information about the non-perturbative behavior of the sym-

metries of the gauge theory. As we discussed earlier in this section, the gauge theory has

SO(2, 2) symmetry to leading order in a g2M expansion. This symmetry is intimately

related to the geometrical surface on which the fermions live. However, once the g2M

corrections are turned on and the D7-brane backreaction cannot neglected, the conformal

symmetry is broken. The dual geometry (3.11) has the same symmetries. In particular,

the SO(2, 2) symmetry is broken down to ISO(1, 1). First, the warp-factor H7 is not in-

variant under dilatations and special conformal transformations just like in field theory.

Second, we see that the AdS3 radial coordinate ρ does not decouple from the transverse

space and appears explicitly in the transverse metric. As usual, the SO(2, 2) conformal

transformations correspond to AdS3 isometries. However, since AdS3 isometries act non-

trivially on ρ and z we find that the SO(2, 2) conformal symmetry of the surface operator

is broken down to ISO(1, 1). The supersymmetries are also reduced with respect to the

probe approximation. This can be shown (see appendix E) by explicitly solving the Type
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IIB Killing spinor equations in the background (3.11). The explicit Killing spinor is given

by

ǫ = h(θ, ϕa))H
−1/2
7 ρ1/2ǫ0, (3.13)

where h(θ, ϕa) is the standard contribution from S5 [9, 10] (see appendix D for the explicit

expression). In addition, ǫ (as well as ǫ0) is subject to the constraints (2.5) and (2.6),

which give rise to eight real supersymmetries. Thus, we obtain the same symmetries as

those preserved by the gauge theory.
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A. The σ-matrix conventions

The σ-matrices σ αα̇
µ are defined in the usual way:16

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.1)

In addition, we define:

σ̃ α̇α
µ = ǫα̇β̇ǫαβσµββ̇ , (A.2)

σ̃µ = (σ0,−σ1,−σ2,−σ3). (A.3)

These matrices satisfy the following properties:

(σµσ̃ν + σν σ̃µ) β
α = −2ηµνδ β

α , (A.4)

(σ̃µσν + σ̃νσµ)α̇
β̇

= −2ηµνδα̇
β̇
, (A.5)

tr(σµσ̃ν) = −2ηµν , (A.6)

σµ
αα̇σ̃ β̇β

µ = −2δβ
αδβ̇

α̇, (A.7)

σµσ̃νσρ = (ηµρσν − ηνρσµ − ηµνσρ) + iǫµνρσσσ, (A.8)

σ̃µσν σ̃ρ = (ηµρσ̃ν − ηνρσ̃µ − ηµν σ̃ρ) − iǫµνρσσ̃σ. (A.9)

In the paper we go from coordinates xµ to:

x± = x0 ± x1, z = x2 + ix3. (A.10)

16In this appendix the index µ is assumed to be flat. In curved space-time we will have to replace in all

expressions ηµν by the space-time metric.
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In this basis, we obtain:

σ− = σ0 − σ1 = −σ0 − σ1 = −
(

1 1

1 1

)

, (A.11)

σ̃− = σ̃0 − σ̃1 = −σ̃0 − σ̃1 = −σ0 + σ1 =

(

−1 1

1 −1

)

, (A.12)

etc. (A.13)

In particular, we have

σ̃+ = η+−σ̃− = −1

2
σ̃− =

1

2
(σ̃0 + σ̃1) =

1

2

(

1 −1

−1 1

)

(A.14)

and:

σ̃z̄ = ηz̄zσ̃
z =

1

2
(σ̃2 + iσ̃3) =

1

2

(

−i i

−i i

)

. (A.15)

The restriction on the supersymmetry parameter (2.8) found in the paper can be written

as:

σ̃ α̇α
+ ǫ i

α = 0 or σ̃ α̇α
z̄ ǫ i

α = 0. (A.16)

Both equations in (A.16) imply that ǫ i
1 = ǫ i

2 .

B. Explicit check of the supersymmetry of the action

In this appendix, we explicitly show that the non-Abelian D3-brane action in the D7-brane

background given in (2.76) is invariant under the supersymmetry transformations in (2.77).

The action has the following structure

S = SV + SSc + SF + Snab, (B.1)

where:

SV = −T3

4

∫

d4x
√−ge−ΦTrFµνFµν−T3

4

∫

d4x
√−g∂µCǫµνρσTr

(

AνFρσ−
2

3
AνAρAσ

)

,

SSc = −T3

2

∫

d4√−ge−ΦTr

(

DµϕijDµϕij +
1

2
(R + ∂µ∂µΦ)ϕijϕij

)

,

SF = T3

∫

d4x
√−ge−ΦTr

(

i

2
λ̄iσ̃

µDµλi − i

2
Dµλ̄iσ̃

µλi

)

− T3

4

∫

d4x
√−g∂µCλ̄iσ̃

µλi,

Snab = T3

∫

d4x
√−ge−ΦTr

(

λ̄α̇i[λ̄
α̇
j, ϕ

ij ] + λαi[λ j
α , ϕij ] −

1

2
[ϕij , ϕkl][ϕij , ϕkl]

)

. (B.2)

In looking at the supersymmetry variation of the action we do not write the terms that

cancel exactly in the same way as they cancel in N = 4 SYM theory in flat space. That

is, we only keep the terms which contain derivatives of the background supergravity fields
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and ǫi and discuss how they cancel. Let us first look at the variation of the terms in the

action involving the gauge fields SV . We obtain:

δSV = −T3

2

∫

d4x
√−g ∂µτTr

(

Fµν − i

2
ǫµνρσFρσ

)

(λ̄iσ̃νǫi)

+
T3

2

∫

d4x
√−g ∂µτ̄Tr

(

Fµν +
i

2
ǫµνρσFρσ

)

(λ̄iσ̃νǫi) + c.c. (B.3)

Using the fact that τ is holomorphic and that ǫi satisfies equations (A.16), it is easy to see

that the first term in the above expression vanishes and only the second term containing

∂µτ̄ survives. Now we vary the fermionic terms in the action in SF under:

δλ i
α = −1

2
Fµν(σµσ̃ν) β

α ǫ i
β . (B.4)

By using the background Killing spinor equation (2.45), we find that the terms in δSF with

∂µτ cancel and terms with ∂µτ̄ produce exactly the same expression as in (B.3) but with

the opposite sign. This provides the cancellation of terms involving the vectors fields and

the fermions.

Now we consider the variation in the action SSc involving the scalars. It is straightfor-

ward to obtain that:

δSSc = 2T3

∫

d4x
√−g (∂µe−Φ)Tr (Dµϕij) (λiǫj) (B.5)

−T3

∫

d4x
√−g e−Φ (R + ∂µ∂µΦ)Tr

(

ϕij(λ
iǫj)

)

+ c.c.

These terms cancel against the variation of SF under:

δλ̄α̇i = 2iǫαjσµ
αα̇Dµϕij −

i

2
ǫαjσµ

αα̇(∂µΦ)ϕij . (B.6)

Let us make some remarks on how the terms containing derivatives of C cancel when we

vary SF (such terms are not present in the variation of SSc in (B.5)). Consider the variation

of the second term in SF under (B.6). We get:

− i

2

∫

d4x
√−g ∂µC Tr

(

Dνϕij(λ
iσµσ̃νǫj)

)

(B.7)

+
i

8

∫

d4x
√−g ∂µC ∂νΦ Tr

(

ϕij(λ
iσµσ̃νǫj)

)

+ c.c.

In both terms we anticommute σµ and σ̃ν using (A.4). Then each term in (B.7) will split

into two terms. The first two terms yield:

i

∫

d4x
√−g ∂µC Tr

(

Dµϕij(λ
iǫj)

)

− i

4

∫

d4x
√−g ∂µC ∂µΦTr

(

ϕij(λ
iǫj)

)

+ c.c. (B.8)

They cancel against the variation of the fermion kinetic term when we rewrite Dǫ in terms

of the derivative of the axion by using (2.45). The remaining two terms are:

i

2

∫

d4x
√−g ∂µC Tr

(

Dνϕij(λ
iσν σ̃µǫj)

)

(B.9)

− i

8

∫

d4x
√−g ∂µC ∂νΦTr

(

ϕij(λ
iσν σ̃µǫj)

)

+ c.c.
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We now use the condition that τ is a holomorphic function together with the projection

satisfied by the Killing spinor σ̃z̄ǫ
i = 0. This can be summarized by:

∂µτ σ̃µǫi = 0. (B.10)

Using this equation, we can get rid of the terms with derivatives of C in (B.9) and write

them using derivatives of e−Φ. The cancellation of such terms arising in δSF and δSSc is

already straightforward.

In the last step, we vary SF under the remaining term in the variation of λ:

δλ i
α = −2 [ϕjk, ϕki]ǫ j

α . (B.11)

The terms containing ∂C cancel (after we use the Killing spinor equation Dǫ ∼ ∂C as

in (2.45)) and we obtain:

−i

∫

d4x
√−g (∂µe−Φ)Tr

(

[ϕjk, ϕ
ki](λ̄iσ̃

µǫj)
)

+ c.c. (B.12)

This term cancels against the variation of Snab. In varying Snab we only have to consider:

δλ̄α̇i = − i

2
ǫαjσµ

αα̇(∂µΦ)ϕkj. (B.13)

Anything else gives terms which cancel just like in flat background. It is straightforward to

see that the variation of Snab under (B.13) indeed cancels (B.12). This finishes our proof

of the supersymmetry of the action.

C. Integrating out the defect fields

In this appendix, we perform the explicit integration over the defect fields. We split the

U(N) gauge field into an SU(N) gauge field which we denote by A and a U(1) gauge field

which we denote by a. Similarly the U(M) gauge field is decomposed into an SU(M) gauge

field Ã and a U(1) gauge field ã. Therefore, we want to perform the following path integral

Z =

∫

[Dχ][Dχ̄][DÃ][Dã] exp
[(

(Sdefect + SCS(Ã) + SCS(ã) + SCS(a, ã)
)]

, (C.1)

where:

Sdefect =

∫

dx+dx−χ̄
(

∂+ + A+ + Ã+ + a+ − ã+

)

χ. (C.2)

Here we took into account that χ carries the opposite U(1) charges under U(N) and U(M)

action. The non-Abelian Chern-Simons term SCS(Ã) is given by

SCS(Ã) = −(2πα′)2τ7

2

∫

G5 ∧ Tr

(

Ã ∧ dÃ +
2

3
Ã ∧ Ã ∧ Ã

)

. (C.3)

Similarly:

SCS(ã) = −(2πα′)2τ7

2

∫

G5 ∧ ã ∧ dã. (C.4)
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Finally, the mixed Chern-Simons terms are given by

SCS(a, ã) = −(2πα′)2τ3

2
N

∫

G1 ∧ a ∧ f̃ +
(2πα′)2

2
M

∫

G5 ∧ ã ∧ f, (C.5)

where f = da and f̃ = dã.

Integrating the fermions in (C.1) yields

∫

[Dχ][Dχ̄] exp (iSdefect) = exp
[

i
(

MΓWZW(A) + NΓWZW(Ã) + NMΓWZW(a, ã)
)]

.

(C.6)

We must now integrate the D7-brane gauge fields Ã and ã in (C.1). The gauge field Ã is

completely decoupled from the N = 4 SYM gauge fields A and a. Therefore the integral

over Ã, which appears in the action through the terms NΓWZW(Ã) + SCS(Ã) just gives a

constant.

Now we have to perform the integral over ã. In order to simplify the formulas, we

consider the case of M coincident D7-branes with the local U(1) symmetry. In this case

the RR one-form flux is given by:

G1 =
gsM

2π
dθ. (C.7)

A similar analysis can be easily generalized for the global solutions, as all we require is

that G1 satisfies the Bianchi identities. The path integral we have to study is
∫

[Dã] exp (iΓ(a, ã)) , (C.8)

where

Γ(a, ã) = NMΓWZW(a − ã) + SCS(ã) + SCS(a, ã). (C.9)

The explicit expressions are given by

ΓWZW(a − ã) = − 1

8π

∫

dx+dx− [∂+ (u − ũ) ∂− (u − ũ) − ∂+ (u − ũ) ∂− (v − ṽ)] , (C.10)

where:

a+ = ∂+u, a− = ∂+v, ã+ = ∂+ũ, ã− = ∂+ṽ. (C.11)

The Chern-Simons action SCS(ã) can be simplified to

SCS(ã) = − 1

8π
NM

∫

dx+dx−dρ
(

ã+f̃−ρ + ã−f̃ρ+ + ãρf̃+−

)

, (C.12)

where ρ is the radial direction away from the N D3-branes and we have restricted the RR

flux to s-waves on the S5. Likewise

SCS(a, ã) =
1

8π
NM

∫

dx+dx−

(

f̃+−(0)

∫

dr ar + f+−(0)

∫

dρ ãρ

)

, (C.13)

where f+−(0) and f̃+−(0) are the boundary values of f+− and f̃+− respectively and r is

the radial coordinate away from the D7-branes. Note that the path integral is Gaussian
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and it is enough to evaluate the action on the equations of motion. Since we have both

bulk and boundary contributions to the action we need to solve the equations of motion

separately on the bulk and on the boundary.

The the bulk equations of motion yield:

f̃−ρ = 0, f̃+ρ = 0, 2f̃+− = f̃+−(0). (C.14)

Furthermore, the boundary equations of motion give:
∫

dr ar = −u, 2f̃+−(0) = f+−(0). (C.15)

Evaluating the action on this solution gives:

Γ(a, ã)|solution = ΓWZW(a). (C.16)

Therefore, the final result of performing the path integral (C.1) is:

Z = exp [i(MΓWZW(A) + MNΓWZW(a))] . (C.17)

We can now combine the SU(N) connection A with the U(1) connection a into a U(N)

gauge field, which with some abuse of notation we will also denote by A.

Therefore, integrating out the localized fields together with the non-dynamical gauge

fields on the D7-branes has the effect of inserting the following surface operator into the

N = 4 SYM path integral in the D7-brane background:

Z = exp (iMΓWZW(A)) . (C.18)

D. A probe D7-brane in AdS5 × S5

In this appendix we study the sypersymmetries preserved by the D7-brane in AdS5 × S5

which represents a surface operator in the probe approximation.

We consider the following parametrization for AdS5 × S5 (we fix the radius L = 1)

ds2
AdS×S = ρ2ηµνdxµdxν +

dρ2

ρ2
+ dθ2 + sin2 θ dΩ2

4, (D.1)

where the metric on S4 is given by:

dΩ2
4 = dϕ2

1 + sin ϕ2
1dϕ2

2 + sin ϕ2
1 sin ϕ2

2dϕ2
3 + sin ϕ2

1 sinϕ2
2 sin ϕ2

3dϕ2
4. (D.2)

It is useful to introduce tangent space gamma matrices, i.e. γm = em
mΓm (m,m = 0, . . . , 9)

where em
m is the inverse vielbein and Γm are the target space matrices:

γµ =
1

ρ
Γµ (µ = 0, 1, 2, 3), γ4 = ρΓρ, γ5 = Γθ,

γa+5 =
1

sin θ





a−1
∏

j=1

1

sinϕj



 Γϕa (a = 1, 2, 3, 4) (D.3)
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The Killing spinor of AdS5 × S5 in the coordinates (D.1) is given by [41]

ǫ =
[

−ρ−
1

2 γ4h(θ, ϕa) + ρ
1

2 h(θ, ϕa)(ηµνxµγν)
]

η2 + ρ
1

2 h(θ, ϕa)η1 (D.4)

where:

h(θ, ϕa) = e
1

2
θγ45e

1

2
ϕ1γ56e

1

2
ϕ2γ67e

1

2
ϕ3γ78e

1

2
ϕ4γ89 . (D.5)

η1 and η2 are constant ten dimensional complex spinors satisfying

γ11η1 = −η1 γ11η2 = η2 (D.6)

with γ11 = γ0γ1 . . . γ9. They also satisfy

γ̃ η1 = η1 γ̃ η2 = −η2, (D.7)

where γ̃ = iγ0123 is the four dimensional chirality matrix. Thus, each spinor η1,2 has 16

independent real components.

The supersymmetries preserved by the embedding of a D-brane probe, are those that

satisfy

Γκǫ = ǫ, (D.8)

where Γκ is the κ-symmetry transformation matrix of the probe worldvolume theory and

ǫ is the Killing spinor of the AdS5 × S5 background (D.4). Both Γκ and ǫ have to be

evaluated at the location of the probe.

Let’s now consider a D7-brane embedding with an AdS3 × S5 worldvolume geometry,

with embedding:

σ0 = x0 σ1 = x1 σ2 = ρ σ3 = θ σ3+a = ϕa (a = 1, 2, 3, 4)

x2 = 0 x3 = 0 (D.9)

and with the worldvolume gauge field set to zero. The matrix Γκ for a D7-brane in a

background with zero B-field and dilaton is given by

d8σ ΓD7 =
1

√

− det(gij)
Γ(8)I (D.10)

where Γ(8) = 1
8!Γi1...i8dσi1 ∧ . . . ∧ dσi8 and I acts on a spinor ψ by Iψ = −iψ. Considering

the embedding in (D), the matrix in (D.10) reduces to:

ΓD7 = γ01456789I. (D.11)

The equation (D.8) has to be satisfied at every point on the worldvolume. Thus, the

term proportional to ρ
1

2 gives:

ΓD7h(θ, ϕa)η1 = h(θ, ϕa)η1. (D.12)

The terms proportional to ρ−
1

2 , ρ
1

2 x0 and ρ
1

2 x1 give:

ΓD7h(θ, ϕa)η2 = −h(θ, ϕa)η2. (D.13)
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Using

h−1γ014h = nIγ01I h−1γ56789h = nIγI456789 I = 4, 5, 6, 7, 8, 9 (D.14)

where

nI(θ, ϕ1, ϕ2, ϕ3, ϕ4) =



















cos θ

sin θ cos ϕ1

sin θ sin ϕ1 cos ϕ2

sin θ sinϕ1 sin ϕ2 cos ϕ3

sin θ sin ϕ1 sin ϕ2 sin ϕ3 cos ϕ4

sin θ sin ϕ1 sin ϕ2 sin ϕ3 sinϕ4



















(D.15)

is a unit vector in R
6 (that is nInI = 1) we get:

h−1ΓD7h = nInJγ01IγJ456789I

= −iγ01456789

= γ01 γ̃ γ11. (D.16)

Thus, the equations (D.12), (D.13) reduce to

γ01η1 = −η1 γ01η2 = η2 (D.17)

Since η1 and η2 satisfy (D.6) and (D.7), they can be written in terms of ten dimensional

Majorana-Weyl spinors ǫ and ε of negative and positive chirality respectively:

η1 = ǫ + iγ0123ǫ η2 = ε − iγ0123ε. (D.18)

By evaluating the Killing spinor (D.4) near the boundary, ǫ can be identified with the gen-

erator of Poincare supersymmetry while ε can be identified with the generator of conformal

supersymmetry of N = 4 SYM. Thus the equations (D.17) become:

γ01ǫ = −ǫ, γ01ε = ε. (D.19)

These conditions are equivalent to (3.6) and (3.7), which describe the unbroken Poincare

and conformal supersymmetries respectively in the field theory. Therefore, for coincident

D7 branes we have shown that they preserve the same half of the Poincare and conformal

supersymmetries as the field theory does in the probe approximation.

D.1 D7 probe without conformal supersymmetries

The D7-brane embedding we have just discussed solution can be generalized to the case

when x2 = x̄2 and x3 = x̄3 where x̄2 and x̄3 are arbitrary constants. The bosonic symmetry

of this embedding is ISO(1, 1)× SO(6). We note that the conformal and U(1) symmetries

are broken in the case of separated D7-branes just like in the field theory.

In this case, the matrix (D.10) is still given by (D.11). The supersymmetry conditions

are

ΓD7h(θ, ϕa)η1 = h(θ, ϕa)η1 (D.20)

ΓD7h(θ, ϕa)η2 = −h(θ, ϕa)η2 (D.21)

ΓD7h(θ, ϕa)η2 = h(θ, ϕa)η2. (D.22)
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The equations (D.21) and (D.22) imply that the conformal supersymmetries are completely

broken. The equation (D.20) implies that the preserved Poincare supersymmetries satisfy:

γ01ǫ = −ǫ. (D.23)

When x̄2 = x̄3 = 0 the equation (D.22) does not have to be satisfied and half of the

conformal supersymmetries are preserved. We thus recover the symmetries preserved by

the field theory in the probe approximation.

E. The Killing spinor

The goal of this appendix is to construct the Killing spinor of the geometry dual to the

surface operator. The geometry can be written as follows

ds2 = −H
−1/2
7 H

−1/2
3 dx+dx− + H

−1/2
7 H

1/2
3 dρ2 + H

−1/2
7 dΩ5 + H

1/2
7 H

−1/2
3 dzdz̄,(E.1)

F0123ρ = H7∂ρH
−1
3 , (E.2)

where

H3 =
L4

ρ4
(E.3)

and H7 is the harmonic function of the D7-brane solution. To find the Killing spinor

we substitute the above solution into the gravitino and dilatino variations, which in the

presence of one-and five-form fluxes take the form:

δΨM = ∂M ǫ +
1

4
ωAB

M ΓABǫ − i

8
eΦ∂NCΓNΓMǫ − i

8 · 5!e
ΦFM1...M5

ΓM1...M5ΓM ǫ = 0, (E.4)

δψ = (ΓM∂MΦ)ǫ + ieΦ∂MCΓMǫ = 0. (E.5)

The dilatino variation is independent of the five-form flux and gives

τ = τ(z), γz̄ = 0, (E.6)

as in the case of D7-brane solutions. When we substitute (E.1) into the gravitino variation,

there will be terms proportional to ∂H7 and terms proportional ∂H3 which will essentially

separate. The term with ∂H7 cancel if ǫ ∼ H
−1/8
7 and (E.6) is satisfied exactly like in the

case of D7-brane solutions. Let us concentrate on the terms proportional to ∂H3. Let us

first consider the variation δΨz. We obtain:

H
1/2
7

8H
3/2
3

∂ρH3γ4γz(ǫ + iγ0γ1γ2γ3ǫ) = 0. (E.7)

Note that ∂zǫ cancels against the terms proportional to ∂zH7 and, hence, eq. (E.7) is not

a differential equation on ǫ. To satisfy (E.7) we have to require:

iγ0123ǫ = ǫ. (E.8)

Eqs. (E.6) and (E.8) are equivalent to (2.5) and (2.6) and, hence, ǫ has eight indepen-

dent components corresponding to eight preserved supercharges. This is in agreement
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with our field theory discussions. Now we consider the equation δΨ± = 0. Due to the

restriction (E.8), it follows that

δΨ± = ∂±ǫ = 0. (E.9)

This means that ǫ is independent of x±. Similarly, from the equation δΨρ = 0 we obtain

∂ρǫ −
1

2ρ
ǫ = 0, (E.10)

which implies ǫ ∼ ρ1/2. The last equations to consider is δΨa = 0, where Ψa are the

components of the gravitino along S5. These equations are

Daǫ −
1

2
γ4Γaǫ = 0. (E.11)

These are the standard equations for the Killing spinor on S5 [9, 10]. The solution is given

in terms of the operator h(θ, ϕa) defined in (D.5). Combining the above conclusions we

find that the Killing spinor is given by

ǫ = h(θ, ϕa)H
−1/2
7 ρ1/2ǫ0, (E.12)

where both ǫ and ǫ0 satisfy conditions (2.5) and (2.6) (note thate γ+ and γz̄ commute with

h(θ, ϕa)).
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